Do Physicians' Financial Incentives Affect Medical Treatment and Patient Health?

Clemens and Gottlieb

Presented by Wonjun

September 25, 2022

- Motivation: Exogenous price shock \Rightarrow Supply change
- Research question: see the title
- Contribution: technology adoption, welfare evaluation of the policy

- Physicians do respond to price shock.
- A possible theoretical explanation
- Price shock can lead to technology diffusion

• Medicare Part B: finances physician and outpatient care for most elderly Americans.

• Medicare Part B: finances physician and outpatient care for most elderly Americans.

$$\mathsf{Reimburse}_{a(i),j,t} = C_t \times RVU_j \times GAF_{a(i)}$$

- \triangleright *i*: county, *a*(*i*): area of *i*, *j*: service, *t*: year
- \triangleright C_t : Conversion Factor (nominal, normalized to 1)
- RVU_j: Relative Value Units
- ▷ GAF_{a(i)}: Geographic Adjustment Factor

• Medicare Part B: finances physician and outpatient care for most elderly Americans.

$$\mathsf{Reimburse}_{a(i),j,t} = C_t \times RVU_j \times GAF_{a(i)}$$

- \triangleright *i*: county, *a*(*i*): area of *i*, *j*: service, *t*: year
- \triangleright C_t : Conversion Factor (nominal, normalized to 1)
- RVU_j: Relative Value Units
- ▷ GAF_{a(i)}: Geographic Adjustment Factor
- Consolidation of a(i) in 1997: 210 \rightarrow 89 districts.

Payment Area Consolidation

Figure: GAF in 1996

Payment Area Consolidation

Figure: Proposed GAF

Payment Area Consolidation

Figure: Change in GAF

$\Delta RR \rightarrow$ total supply, technology adoption, healthcare practice

 $\Delta RR \rightarrow$ total supply, technology adoption, healthcare practice

I. Price shock on aggregate healthcare supply

 $\Delta RR \rightarrow$ total supply, technology adoption, healthcare practice

- I. Price shock on aggregate healthcare supply
- II. Construction of physicians' utility function

 $\Delta RR
ightarrow$ total supply, technology adoption, healthcare practice

- I. Price shock on aggregate healthcare supply
- II. Construction of physicians' utility function
- III. Some results: tech adoption, health care practice

• Claims submitted by providers to Medicare for reimbursement.

- Health care provision
- 5% of Medicare Part B beneficiary population, panel
- Denominator files
 - Demographic info about the beneficiary sample
- Research question
- Contribution

Consider an event study of the following

$$\ln(\#RVU_{s(i),t}) = \sum_{p(t)\neq 0} \beta_{p(t)} \cdot \Delta RR_i \times I_{p(t)} + \gamma_i + \delta_t + \eta_{s(i),t} + \zeta' X_{i,s(i),t} + \epsilon_{i,t}$$

- \triangleright s(i): state of county *i*, p(t): period (grouped year)
- $\triangleright \#RVU_{s(i),t}$: total RVUs(services) provided per patient.
- $\triangleright \Delta RR_i$: Change in reimbursement rate

	Aggregate health care supply: ln(relative value units per patient)							
	County level (1)	Baseline (2)	Weighted (3)	Unmatched counties (4)	w/ HMO control (5)	No demog. controls (6)	No comorb. controls (7)	Population controls (8)
Price change × short run	0.801 (0.531)	0.817 (0.596)	1.010 (0.721)	0.454 (0.554)	0.741 (0.598)	0.763 (0.596)	0.776 (0.579)	1.223** (0.653)
Price change × medium run	1.966^{***} (0.650)	2.012*** (0.770)	1.952** (0.825)	1.676** (0.701)	1.876** (0.762)	1.956** (0.770)	1.996*** (0.750)	2.583*** (0.827)
Price change × long run	1.423* (0.735)	1.464^{*} (0.884)	2.686** (1.211)	1.391* (0.790)	$1.405 \\ (0.888)$	$1.405 \\ (0.880)$	1.423 (0.889)	2.268^{**} (0.938)
Old MPLs Estimation Standard errors	177 OLS Clustered	177 OLS Bootstrap	177 OLS Bootstrap	200 OLS Bootstrap	177 OLS Bootstrap	177 OLS Bootstrap	177 OLS Bootstrap	177 OLS Bootstrap
Observations	28,340	2,301	2,301	2,600	2,301	2,301	2,301	2,301

TABLE 2-EFFECT OF REIMBURSEMENT RATES ON LOG HEALTH CARE PER PATIENT

Figure: "Table" of the estimation results of the event study

$$\tilde{\rho}_{a,t} = \sum_{p(t)\neq 0} \theta_{p(t)} \cdot \tilde{\delta}_{a,t}^{p(t)} + u_{a,t}$$

- \triangleright s(i): state of county i, p(t): period (grouped year)
- $\tilde{\rho}_{a,t}$: adjusted log RVUs (partialing out controls).
- $\triangleright \tilde{\delta}_{a,t}^{p(t)}$: adjusted reimbursement rate

I. Payment area level Analysis

FIGURE 3. IMPACT OF PRICE CHANGE ON AGGREGATE QUANTITY SUPPLIED

Figure: Event Study of reimbursement rate change on aggregate quantity supplied

• OK, physicians respond to the price shock \Rightarrow greater payoff, greater supply¹

¹demand not affected :: medicare

- OK, physicians respond to the price shock \Rightarrow greater payoff, greater supply¹
- Lag in response?
- Drives of the behavior?
- Welfare implication?

¹demand not affected :: medicare

- OK, physicians respond to the price shock \Rightarrow greater payoff, greater supply¹
- Lag in response?
- Drives of the behavior?
- Welfare implication?
- Other outcomes

¹demand not affected ... medicare

• Standard practice style

$$U_{\mathcal{S}}(q;\gamma_i) = (r-\bar{c})q - e(\frac{q}{\gamma_i}) + \alpha b(Q)q$$

where r: **reimburse**, q: quantity, γ_i : productivity, c: MC, $e(\cdot)$: leisure loss, Q: agg. supply, $b(\cdot)$: marginal health benefit

Standard practice style

$$U_{\mathcal{S}}(q;\gamma_i) = (r-\bar{c})q - e(\frac{q}{\gamma_i}) + \alpha b(Q)q$$

where r: **reimburse**, q: quantity, γ_i : productivity, c: MC, $e(\cdot)$: leisure loss, Q: agg. supply, $b(\cdot)$: marginal health benefit • Intense practice style (by adopting technology)

$$U_{I}(q;\gamma_{i}) = (r - \underline{c})q - k - e(\frac{q}{\gamma_{i}}) + \alpha b(Q)q$$

where $\underline{c} < \overline{c}$, k: adoption cost.

• A continuum of physicians $\gamma_i \in (0,\infty)$, $\gamma_i \sim F$

- A continuum of physicians $\gamma_i \in (0,\infty)$, $\gamma_i \sim F$
- Each physicians *i* chooses *S* or *I* and q_i^* .

- A continuum of physicians $\gamma_i \in (0,\infty)$, $\gamma_i \sim F$
- Each physicians *i* chooses *S* or *I* and q_i^* .
- $\exists \gamma^* \text{ s.t. } i \text{ chooses S if } \gamma < \gamma^*$

- A continuum of physicians $\gamma_i \in (0,\infty)$, $\gamma_i \sim F$
- Each physicians *i* chooses *S* or *I* and q_i^* .
- $\exists \gamma^* \text{ s.t. } i \text{ chooses S if } \gamma < \gamma^*$
- γ^{\ast} is a decreasing function of reimbursement rate

- A continuum of physicians $\gamma_i \in (0,\infty)$, $\gamma_i \sim F$
- Each physicians *i* chooses *S* or *I* and q_i^* .
- $\exists \gamma^*$ s.t. *i* chooses S if $\gamma < \gamma^*$
- γ^* is a decreasing function of reimbursement rate \Rightarrow RR \rightarrow tech adoption \rightarrow agg. supply

- A continuum of physicians $\gamma_i \in (0,\infty)$, $\gamma_i \sim F$
- Each physicians *i* chooses *S* or *I* and q_i^* .
- $\exists \gamma^*$ s.t. *i* chooses S if $\gamma < \gamma^*$
- γ^* is a decreasing function of reimbursement rate \Rightarrow RR \rightarrow tech adoption \rightarrow agg. supply
- Aggregate $Q = Q_S + Q_I$, which leads to

$$\frac{dQ}{dr} = \int_{S} \frac{dq_{S}^{*}}{dr} dF + \int_{I} \frac{dq_{I}^{*}}{dr} dF - [q_{I}^{*} - q_{S}^{*}]f(\gamma^{*})\frac{d\gamma^{*}}{dr}$$

- A continuum of physicians $\gamma_i \in (0,\infty)$, $\gamma_i \sim F$
- Each physicians *i* chooses *S* or *I* and *q*^{*}_{*i*}.
- $\exists \gamma^*$ s.t. *i* chooses S if $\gamma < \gamma^*$
- γ^* is a decreasing **function of reimbursement rate** \Rightarrow RR \rightarrow tech adoption \rightarrow agg. supply
- Aggregate $Q = Q_S + Q_I$, which leads to

$$\frac{dQ}{dr} = \int_{S} \frac{dq_{S}^{*}}{dr} dF + \int_{I} \frac{dq_{I}^{*}}{dr} dF - [q_{I}^{*} - q_{S}^{*}]f(\gamma^{*})\frac{d\gamma^{*}}{dr}$$

Welfare change

$$\frac{dW}{dr} = [b(Q) - r]\frac{dQ}{dr}$$

• I thought :< they would estimate some structural parameters by using the result of part II, but they didn't. They just gave some reduced-form results.

- I thought :< they would estimate some structural parameters by using the result of part II, but they didn't. They just gave some reduced-form results.
- Instead, the paper presents lists of event studies to support the theoretical formulation of Part II.

$$U_i(q;\gamma_i) = (r-c_i)q - k \cdot 1_I - e(\frac{q}{\gamma_i}) + \alpha b(Q)q$$

$$U_i(q;\gamma_i) = (r-c_i)q - k \cdot 1_I - e(\frac{q}{\gamma_i}) + \alpha b(Q)q$$

"Physicians are good people" ($\alpha > 0$).

$$U_i(q;\gamma_i) = (r-c_i)q - k \cdot 1_I - e(\frac{q}{\gamma_i}) + \alpha b(Q)q$$

"Physicians are good people" ($\alpha > 0$).

 $\therefore \alpha > 0 \Rightarrow \frac{dq}{dr} \downarrow \text{ if } b(Q) \approx 0 \Rightarrow \frac{dr}{dq} \approx 0 \text{ in less discretionary service.}$

III. Discretion

FIGURE 5. SUPPLY RESPONSE BY SERVICE CATEGORY

• Non-radiologists began to use MRI more (adopted more) as a response to RR increase.

III. MRI Provision

FIGURE 7. IMPACT OF PRICE CHANGE ON MRI PROVISION AND OWNERSHIP

III. Back pain

FIGURE 8. IMPACT OF PRICE CHANGE ON BACK PAIN TREATMENT

III. Cardiovascular disease

FIGURE 9. IMPACT OF PRICE CHANGE ON CARDIAC PATIENT TREATMENT

- A 2% increase in reimbursement rate leads to a 3% percent increase in care.
- Payment policy is one of the determinants of patient access to care, the composition of care delivered, and the aggregate Medicare spending.

Clemens and Gottlieb, 2014, Do Physicians' Financial Incentives Affect Medical Treatment and Patient Health?, American Economics Review