Ability, Learning, and Career Path of Cardiac Specialists

Erin M. Johnson

Presented by Rachel Clohan

September 28, 2022

Motivation

- Programs aimed at incentivizing improvements to quality of care
 - Physician "report card"
 - Quality measures become publically available (typically risk-adjusted mortality rates)
 - Pay-for-performance programs
 - Ties reimbursement directly to measurable outcomes

Motivation

- Programs aimed at incentivizing improvements to quality of care
 - Physician "report card"
 - Quality measures become publically available (typically risk-adjusted mortality rates)
 - Pay-for-performance programs
 - Ties reimbursement directly to measurable outcomes
- Do doctors change their referral patterns based on information about specialist quality, and how does that change specialist behavior?

Preview

- Lower quality specialists are more likely to stop practicing
- Lower quality specialists are potentially more likely to move to capacity constrained markets to avoid referral reduction
- Referring doctors try to allocate patients to higher quality doctors

Data

- Medicare Part B claims from 1996-2005 includes procedure/diagnosis codes, charges submitted, payment information, etc.
- Interventional cardiologists (IC) and cardiothoracic surgeons (CT)
- Medicare Physician Identification and Eligibility Registry (MPIER)
 physician data
- Medicare Denominator patient demographic data
- Use patient mortality and risk factors to create doctor quality measures

Model

$$y_{ijt}^* = x_{ijt}\beta + \sigma_u u_i + v_{ijt}$$

where $u_i \sim \mathcal{N}(0,1)$

$$y_{ijt} = \mathbf{1}\{y_{ijt}^* > 0\}$$

$$\mathbb{E}[v_{ijt}|u_i,x_{ijt}] = \bar{x_i}\gamma$$

- y_{ijt}^{*}: latent variable of patient mortality
- x_{ijt}: patient and procedure characteristics

- $\bar{x_i}$: mean of x_{ijt} at the doctor level
- *u_i*: aspects correlated with doctor quality

Model

$$y_j^* = \beta_0 + \beta_1 Q_j + \beta_3 X_j + v_j$$

 $y_i = \mathbf{1} \{ y_i^* > 0 \}$

- y_i^* : latent variable of dropout/moving/etc
- Q_i : quality measure for doctor
- X_j: vector of doctor characteristics

Results

Table 3: Analysis of Dropout Behavior									
	ICs			CT Surgeons					
PCI/CABG dropout	(1)	(2)	(3)	(4)	(5)	(6)			
Doctor Quality	-0.99	-0.84	-0.79	-3.24	-2.01	-2.45			
	(0.44)	(0.40)	(0.39)	(0.78)	(0.74)	(0.68)			
Foreign School	-2.58	-3.64	-3.77	-2.58	-3.64	-1.44			
	(1.07)	(0.88)	(0.86)	(1.07)	(0.88)	(1.94)			
Prestigious School	0.01	-1.29	-2.16	0.01	-1.29	0.16			
	(1.29)	(1.04)	(1.01)	(1.29)	(1.04)	(1.79)			
HRR size (beneficiaries)	-0.20	-0.10	0.01	-0.39	0.58	-0.40			
	(0.54)	(0.49)	(0.48)	(0.93)	(0.87)	(0.84)			
HRR size (reimbursement)	-0.39	-0.18	0.11	-2.83	-3.61	2.40			
	(0.55)	(0.51)	(0.48)	(0.96)	(0.96)	(0.89)			
Cohort fixed effects		Yes	Yes		Yes	Yes			
N	4228	4228	3987	2814	2814	2377			
Pseudo R-squared	0.0047	0.081	0.040	0.012	0.14	0.073			
Medicare dropout									
Doctor Quality	-0.31	-0.17	-0.18	-2.66	-1.24	-1.61			
	(0.23)	(0.15)	(0.16)	(0.67)	(0.54)	(0.49)			
Foreign School	0.19	-0.30	-0.32	0.19	-0.30	0.15			
	(0.62)	(0.36)	(0.37)	(0.62)	(0.35)	(1.45)			
Prestigious School	1.07	0.24	0.02	1.07	0.24	-0.12			
	(0.78)	(0.45)	(0.46)	(0.78)	(0.45)	(1.31)			
HRR size (beneficiaries)	0.58	0.41	0.35	-0.32	0.56	-0.17			
	(0.28)	(0.20)	(0.20)	(0.81)	(0.65)	(0.63)			
HRR size (reimbursement)	-0.77	-0.51	-0.32	-2.36	-2.85	-2.31			
	(0.31)	(0.22)	(0.22)	(0.84)	(0.68)	(0.66)			
Cohort fixed effects		Yes	Yes		Yes	Yes			
N	4228	4006	3765	2814	2814	2377			
Pseudo R-squared	0.011	0.13	0.073	0.014	0.18	0.11			

Results

Table 4: Analysis of Moving Behavior									
	ICs			CT Surgeons					
Change in zipcode	(1)	(2)	(3)	(4)	(5)	(6)			
Doctor Quality	-1.63	-1.45	-1.60	-1.83	-2.30	-2.43			
	(0.77)	(0.78)	(0.83)	(0.94)	(0.99)	(1.13)			
Foreign School	0.38	1.82	2.65	-3.74	4.41	2.28			
	(1.89)	(1.92)	(2.02)	(2.59)	(2.89)	(3.38)			
Prestigious School	-2.46	-2.19	-1.87	-3.85	-2.19	-1.64			
	(2.19)	(2.22)	(2.35)	(2.39)	(2.50)	(2.86)			
HRR size (beneficiaries)	1.19	0.97	0.87	3.93	3.30	3.02			
	(0.88)	(0.89)	(0.94)	(1.10)	(1.13)	(1.28)			
HRR size (reimbursement)	-0.70	-0.75	-0.49	-2.43	-2.06	-2.07			
	(0.89)	(0.91)	(0.95)	(1.10)	(1.14)	(1.30)			
Cohort fixed effects		Yes	Yes		Yes	Yes			
N	4228	4228	3722	2814	2814	2186			
Pseudo R-squared	0.0013	0.014	0.0090	0.0052	0.048	0.045			
Change in HRR									
Doctor Quality	-0.77	-0.55	-0.83	-2.57	-3.26	-2.95			
	(0.52)	(0.51)	(0.53)	(0.81)	(0.81)	(0.92)			
Foreign School	2.24	4.08	5.16	-7.43	1.75	2.76			
	(1.46)	(1.45)	(1.53)	(2.03)	(2.58)	(3.06)			
Prestigious School	1.68	2.38	1.98	-2.05	0.16	-0.74			
	(1.70)	(1.69)	(1.75)	(1.99)	(2.06)	(2.33)			
HRR size (beneficiaries)	-2.06	-2.25	-2.17	-1.33	-2.28	-1.93			
	(0.66)	(0.63)	(0.65)	(0.95)	(0.95)	(1.08)			
HRR size (reimbursement)	0.19	0.11	0.37	0.50	0.91	0.77			
	(0.68)	(0.66)	(0.68)	(0.94)	(0.93)	(1.07)			
Cohort fixed effects		Yes	Yes		Yes	Yes			
N	4149	4149	3728	2778	2729	2145			
Pseudo R-squared	0.0045	0.059	0.066	0.0083	0.090	0.087			

Results

Figure 2: Time Trends in Claim Volumes by Dropout Status ICs PCI Claims by PCI Dropout Status Claims by Dropout Status Dropouts 2001 ---- Dropouts 2002 Dropouts 2001 ---- Dropouts 2002 Dropouts 2003 - - Dropouts 2004 Dropouts 2003 - - - Dropouts 2004 — — Dropouts 2005 — — — Non-Dropouts Dropouts 2005 - - - Non-Dropouts CT surgeons CABG Claims by CABG Dropout Status Claims by Dropout Status 1996 1998 2000 2004 1996 1998 2000 2004 Dropouts 2001 ---- Dropouts 2002 Dropouts 2001 ---- Dropouts 2002 Dropouts 2003 - - Dropouts 2004 Dropouts 2003 - - Dropouts 2004 - - Dropouts 2005 - - - - Non-Dropouts - - Dropouts 2005 - - - Non-Dropouts

3

Questions/Threats

- How generalizable are these results?
- Differential effects across capacity constrained vs non-capacity constrained patients
- Is mortality the best quality outcome?