The Effects of Physician and Hospital Integration on Medicare Beneficiares' Health Outcomes

Koch, Wendling and Wilson (2021)

November 30, 2022

Existing theoretical literature on vertical integration in health care has shown ambiguity in their effects.

• May result in more efficient care and service

- May result in more efficient care and service
- Eliminates double marginalization

- May result in more efficient care and service
- Eliminates double marginalization
- fosters quality

- May result in more efficient care and service
- Eliminates double marginalization
- fosters quality
- Lower incentives to innovate

- May result in more efficient care and service
- Eliminates double marginalization
- fosters quality
- Lower incentives to innovate
- Higher prices

This ambiguity has led to growth in empirical research analyzing the effects of integration in health care.

Key challenge:

- Quality is difficult to measure and observe
- Integration is difficult to measure

Existing literature has pointed out the absence of causal relationship studies between provider integration and quality.

Thus, this paper aims to study the relationship between hospital and physician integration on the quality of care, broadly defined.

• Do hospital acquisitions of physicians lead to improved clinical outcomes for Medicare patients aged 65 and older?

Research Question

- Do hospital acquisitions of physicians lead to improved clinical outcomes for Medicare patients aged 65 and older?
 - What are the effects of acquisitions on a set of health outcomes representing the progression of hypertension and diabetes into worse health states?

• Contributes to our understanding of the effects of vertical integration in health care.

- Contributes to our understanding of the effects of vertical integration in health care.
- Extends the empirical literature in the effects of providers integration on health care quality in three ways:

- Contributes to our understanding of the effects of vertical integration in health care.
- Extends the empirical literature in the effects of providers integration on health care quality in three ways:
 - Identify effects of integration trough physician acquisitions by hospital systems associated with health outcomes of interest.

- Contributes to our understanding of the effects of vertical integration in health care.
- Extends the empirical literature in the effects of providers integration on health care quality in three ways:
 - Identify effects of integration trough physician acquisitions by hospital systems associated with health outcomes of interest.
 - e Measure health using health states outcomes rather than treatments or utilization-based measures such as re admissions.

- Contributes to our understanding of the effects of vertical integration in health care.
- Extends the empirical literature in the effects of providers integration on health care quality in three ways:
 - Identify effects of integration trough physician acquisitions by hospital systems associated with health outcomes of interest.
 - e Measure health using health states outcomes rather than treatments or utilization-based measures such as re admissions.
 - Employ novel estimation procedures to control for potential confounding factors by a difference in difference and two different propensity score matching techniques.

Preview of Findings

 Hospital acquisitions of existing physician practices have little effect on health outcomes of interest.

Data

Period 2005 to 2012

- Ambulatory and hospital claims from Medicare.
- SK&A (Office-based Provider Database)
- Levin Health Care Acquisition Reports.

Treatment group assignment

Control group assigment

• Patients of other providers not identified as part of the acquisitions.

Propensity Score Matching

Logistic Probability Model

$$\Pr\left(A_{i}=1 \mid X; \Theta_{A}\right) = f\left(\alpha + \beta_{i}X_{i}^{i} + \beta_{d}X_{i}^{d} + \beta_{g}X_{i}^{g} + \epsilon_{i}\right)$$

- X_i^i are patient characteristics for patient i
- X_i^d are the characteristics of providers visited by patient *i* (include number of physician visits)
- X_i^g are characteristics of the physician groups visited by patient *i*.

Account for patient heterogeneity, X_i^i , using the patient's birth cohort, race, sex, health condition, and urbanicity.

	All potential controls			Matched nonacquired		Acquired		Normalized differences		
		Standard		Standard		Standard		Potential		
Variable	Mean	Deviation	Mean	Deviation	Mean	Deviation	Match	Controls		
Propensity Score	0.023	0.048	0.136	0.117	0.145	0.126	0.074	1.274		
				Demographic	characteristics					
White	0.871	0.336	0.918	0.275	0.917	0.276	-0.003	0.151		
Male	0.370	0.483	0.380	0.485	0.383	0.486	0.005	0.026		
Age	76.71	7.81	77.66	7.44	77.60	7.44	-0.008	0.117		
Metro >1MM	0.450	0.497	0.468	0.499	0.466	0.499	-0.004	0.032		
Metro 500K-1MM	0.211	0.408	0.248	0.432	0.230	0.421	-0.042	0.045		
Metro <500K	0.115	0.319	0.093	0.291	0.096	0.295	0.010	-0.061		
Nonmetro	0.223	0.417	0.191	0.393	0.208	0.406	0.043	-0.038		
		Health condition diagnoses								
Hypertension	0.863	0.344	0.900	0.300	0.905	0.294	0.015	0.131		
Diabetes	0.374	0.484	0.379	0.485	0.384	0.486	0.010	0.020		
Circulatory	0.919	0.272	0.953	0.213	0.955	0.206	0.014	0.150		
Musculoskeletal	0.817	0.387	0.868	0.339	0.872	0.335	0.012	0.151		
Sense organs	0.669	0.470	0.725	0.447	0.723	0.447	-0.003	0.117		
Gastrointestinal	0.636	0.481	0.709	0.454	0.713	0.452	0.011	0.166		
Injury	0.597	0.491	0.667	0.471	0.675	0.469	0.017	0.162		
Endocrine	0.584	0.493	0.600	0.490	0.602	0.490	0.004	0.037		
Signs/Symtoms	0.555	0.497	0.630	0.483	0.645	0.479	0.029	0.183		
Respiratory	0.525	0.499	0.591	0.492	0.599	0.490	0.016	0.149		
Skin conditions	0.440	0.496	0.484	0.500	0.490	0.500	0.012	0.101		
	Provider characteristics									
Family practice	0.560	0.496	0.625	0.484	0.634	0.482	0.020	0.152		
Other	0.429	0.495	0.480	0.500	0.483	0.500	0.005	0.107		
Radiology	0.209	0.407	0.251	0.434	0.259	0.438	0.016	0.117		
Cardiology	0.154	0.361	0.195	0.396	0.216	0.412	0.053	0.162		
Opthalmology	0.129	0.335	0.141	0.348	0.143	0.350	0.004	0.041		
Podiatry	0.100	0.300	0.118	0.323	0.117	0.322	-0.002	0.055		
Firm size <5	0.854	0.353	0.850	0.357	0.848	0.359	-0.004	-0.017		
Firm size 5-24	0.688	0.463	0.750	0.433	0.755	0.430	0.012	0.150		
Firm size 25–49	0.376	0.484	0.453	0.498	0.501	0.500	0.096	0.254		
Firm size 50-99	0.320	0.467	0.407	0.491	0.457	0.498	0.100	0.283		
Firm size 100–200	0.296	0.457	0.387	0.487	0.419	0.493	0.065	0.258		
Firm size >200	0.323	0.468	0.491	0.500	0.491	0.500	-0.001	0.346		
Observations		26,077		93,109		30,742				

TABLE 1.—SUMMARY AND BALANCE STATISTICS FOR THE MEDICARE SAMPLE, 2006–2012

Health Outcomes Acquisition Effects

Discrete-time Hazard Model

$$\Pr(h_{it} = 1 \mid X_{it}, \Theta) = \Lambda(\alpha + \theta_{PM}PM_{it} + \beta_M M_i + \delta_{ZIP} + \delta_t + \beta_X X_{it} + \beta_{M*y} (M_i \times yr_{it}) + u_{it}).$$

This model considers the probability that we observe a positive realization of our health outcome variable in the contemporaneous period, $h_{it} = 1$.

 θ_{PM} effect of interest, represents the clinical clinical benefits (or harm) attributable to the acquisition.

 $\Lambda(.)$ takes a linear functional form for the full sample and a proportional hazard model for the matched sample estimator.

Health Outcomes Acquisition Effects

Discrete-time Hazard Model

 $\Pr(h_{it} = 1 \mid X_{it}, \Theta) = \Lambda(\alpha + \theta_{PM}PM_{it} + \beta_M M_i + \delta_{ZIP} + \delta_t + \beta_X X_{it} + \beta_{M*y} (M_i \times yr_{it}) + u_{it}).$

- *M*, acquisition indicator variable
- PM, post acquisition indicator variable
- X_{it}, patient and provider characteristics
- δ_t , quarter-year fixed effects
- δ_{ZIP} , three-digit ZIP code fixed effects
- β_{M*y} , acquisition-specific time trend

Outcome	Matched Sample			Preacquisition			Postacquisition			
	Observations	Mean	Standard Deviation	Observations	Mean	Standard Deviation	vations	Mean	Standard Deviation	
Women	Full sample									
Mortality	677,829	0.0123	0.1104	393,075	0.0107	0.1028	243,334	0.0157	0.1243	
				Diab	etes sample					
Mortality	244,369	0.0171	0.1297	133,231	0.0151	0.122	99,570	0.0198	0.1393	
Asymptomatic	223,094	0.0058	0.0763	121,523	0.008	0.089	88,168	0.0052	0.072	
Glaucoma	181,275	0.0055	0.0743	102,918	0.0056	0.0745	71,285	0.0044	0.0665	
Symptomatic	155,016	0.0259	0.1589	85,174	0.0317	0.1752	57,836	0.0214	0.1447	
				Hyperte	ension sample	:				
Mortality	613,928	0.0132	0.1141	349,180	0.0115	0.1068	230,092	0.0163	0.1267	
AMI	574,484	0.0058	0.076	328,527	0.0070	0.0835	207,225	0.0056	0.0748	
Acute cardiac	323,628	0.0427	0.2021	203,296	0.0455	0.2084	95,219	0.0396	0.195	
Ischemic heart	361,774	0.0250	0.1560	217,080	0.0286	0.1667	117,934	0.0184	0.1343	
Men				Fu	ll sample					
Mortality	415,280	0.0138	0.1166	247,730	0.0123	0.1101	146,603	0.0168	0.1286	
				Diab	etes sample					
Mortality	169,387	0.018	0.133	95,730	0.0165	0.1275	66,790	0.0208	0.1428	
Asymptomatic	153,737	0.0064	0.08	88,905	0.0069	0.0829	60,221	0.0057	0.075	
Glaucoma	131,769	0.0052	0.0718	78,735	0.0057	0.0751	51,177	0.0043	0.0651	
Symptomatic	106,175	0.028	0.1649	62,009	0.0344	0.1822	38,215	0.0233	0.1507	
				Hyperte	ension sample	:				
Mortality	370,265	0.0148	0.1207	215,780	0.0134	0.1148	137,538	0.0175	0.1311	
AMI	335,366	0.0079	0.0887	198,270	0.0093	0.0959	119,150	0.0074	0.0855	
Acute cardiac	189,629	0.0458	0.209	121,420	0.0503	0.2185	55,094	0.0411	0.1984	
Ischemic heart	157,908	0.0359	0.186	94,964	0.0435	0.2039	45,535	0.0257	0.1583	

TABLE 2.—SUMMARY OF NEW CONDITION DIAGNOSES FOR MATCHED SAMPLE, 2006–2012

Results

Outcome	Difference-	n-difference	Blocking	estimator	Matching estimator						
	Women	Men	Women	Men	Women	Men					
	Full sample										
Mortality	0.0012*	0.0008	0.0018	0.0020	0.0130	0.0003					
	(0.0004)	(0.0005)	(0.0031) Dishata	(0.0073)	(0.0093)	(0.0086)					
		Diabetes sample									
Mortality	0.0013^{*}	0.0000	0.0022	0.0021	-0.0061	-0.0001					
•	(0.0006)	(0.0009)	(0.0051)	(0.0064)	(0.0132)	(0.0122)					
Asymptomatic	-0.0007	0.0004	-0.0004	0.0010	-0.0037	0.0216					
• •	(0.0004)	(0.0005)	(0.0036)	(0.0043)	(0.0188)	(0.0209)					
Glaucoma	0.0004	0.0002	0.0003	0.0005	-0.0053	-0.0108					
	(0.0005)	(0.0006)	(0.0037)	(0.0045)	(0.0254)	(0.0273)					
Symptomatic	-0.0028^{*}	-0.0030	-0.0022	-0.0017	0.0113	0.0083					
* *	(0.0012)	(0.0015)	(0.0082)	(0.0118)	(0.0128)	(0.0132)					
	Hypertension sample										
Mortality	0.0011*	0.0008	0.002	0.0022	0.0141	-0.0005					
	(0.0004)	(0.0005)	(0.0035)	(0.0071)	(0.0094)	(0.0087)					
AMI	-0.0013^{*}	-0.0019^{*}	-0.0011	-0.0018	-0.0359^{*}	-0.0097					
	(0.0003)	(0.0005)	(0.0024)	(0.0066)	(0.013)	(0.0118)					
Acute cardiac	-0.003^{*}	-0.0059^{*}	-0.0019	-0.0061	0.0079	0.0020					
	(0.001)	(0.0015)	(0.0087)	(0.0193)	(0.0071)	(0.0070)					
Ischemic heart	-0.0029^{*}	-0.0077*	-0.0014	-0.0013	-0.0183	-0.0214*					
	(0.0007)	(0.0016)	(0.0061)	(0.0213)	(0.0094)	(0.0107)					

TABLE 3.—POSTACQUISITION EFFECTS ON HEALTH-STATE TRANSITION PROBABILITIES FROM THREE ESTIMATORS

⁸Statistically significant at the 5% CL Standard error in parentheses. Marginal effects are percentages/100, Marginal effect simulas are calculated as $ME = \Lambda(K) + 6p_{42}) - \Lambda(K)$ for a 77-year od in the 452 three-digit 220 exchange the reader (12006 for matching). Controls include the nex physician specially, patient 221 exchange the state data material material significant at the 5% CL Standard simulation of the state of the

Results

Outcome	Pair fixed effects			Full set of controls			Age and quarter only		
	Women	Men	R ²	Women	Men	R^2	Women	Men	R^2
					Full sample				
Mortality	0.0869 (0.0487)	-0.0085 (0.0559)	0.2946	0.0535 (0.0384)	0.0013 (0.0414) Diabetes sample	0.1911	0.038 (0.0351)	-0.0142 (0.0386)	0.0526
Mortality	0.0936 (0.089)	-0.1083 (0.0995)	0.3588	-0.0253 (0.0545)	-0.0004 (0.0575)	0.1769	-0.0347 (0.0496)	-0.0246 (0.0538)	0.0434
Asymptomatic	-0.0456 (0.1244)	0.2844 (0.1512)	0.215	-0.0165 (0.0847)	0.0968 (0.0946)	0.0792	-0.1051 (0.0792)	-0.0015 (0.0893)	0.0065
Glaucoma	0.1152 (0.1949)	-0.4553 (0.228)	0.4206	-0.0223 (0.1069)	-0.0445 (0.1132)	0.0907	0.0364 (0.0981)	-0.0387 (0.1055)	0.0103
Symptomatic	0.0774 (0.085)	-0.082 (0.095)	0.2319	0.0463 (0.0528)	0.0355 (0.0567)	0.0766	0.0621 (0.0487)	0.0207 (0.0529)	0.0106
				Hy	pertension samp	le			
Mortality	0.0825 (0.0501)	-0.0224 (0.0577)	0.2902	0.0579 (0.039)	-0.0025 (0.0421)	0.1851	0.0532 (0.0358)	-0.0164 (0.0394)	0.0492
AMI	-0.1229 (0.0744)	-0.1465 (0.0808)	0.3956	-0.1581* (0.0557)	-0.0481 (0.0585)	0.2266	-0.1615* (0.0504)	-0.1000 (0.0535)	0.0068
Acute cardiac	0.0251 (0.0421)	-0.026 (0.0524)	0.2936	0.0344 (0.031)	0.0097 (0.0346)	0.1586	-0.0008 (0.0273)	-0.0318 (0.0309)	0.0076
Ischemic heart	-0.1086* (0.0538)	-0.0166 (0.0692)	0.3179	-0.0747 (0.0388)	-0.087* (0.0434)	0.1956	-0.1365* (0.034)	-0.1282* (0.0384)	0.0128

TABLE 4.—POSTACQUISITION COEFFICIENT ESTIMATES FROM THREE MATCHING ESTIMATOR SPECIFICATIONS

*Statistically significant at the 5% confidence interval. Standard errors reported in parentheses. Matched-pair fixed-effects model estimated using procedure outlined by Chamberlain (1980). Fixed effects in that model represent indicators for matches between an acquired physician's patient and a nonacquired physician's patient from the propensity score procedure. Fixed-effect model includes quarter and year dummites but not the interactions. Marginal effects from the fixed-effects from the other specifications provided in table C-9.

Robustness Check Heterogeneous Acquisition Effects

Heterogenous group effects

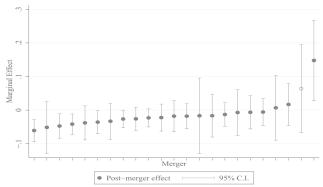
$$\Pr(h_{it} = 1 \mid X_{it}, \Theta) = \Lambda \left(\alpha + \sum_{g \in G} \theta_p^g M_{it}^g P_{ost}^g + \sum_{g \in G} \theta_M^g M_{it}^g + \beta_x X_{it} + \beta_{M*y} (M_i \times yr_{it}) + \delta_{ZIP} + \delta_t + u_{it}) \right)$$

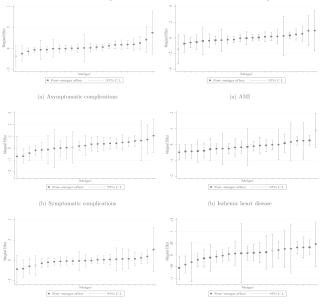
Heterogenous time effects

$$\Pr(h_{it} = 1 \mid X_{it}, \Theta) = \Lambda \left(\alpha + \sum_{l=-15}^{15} \theta_l I_{it} + \sum_{l=-15}^{15} \theta_{fl} (I_{it} \times fem_i) + \beta_M M_i + \beta_{fM} (fem_i \times M_i) + \beta_X X_{it} + \beta_{M*y} (M_i \times yr_{it}) + \delta_{ZIP} + \delta_t + u_{it}) \right)$$

15 / 22

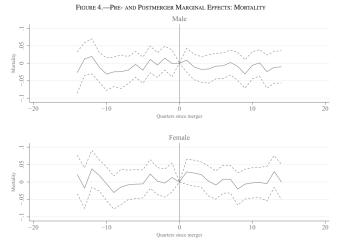
Effects by Acquisition

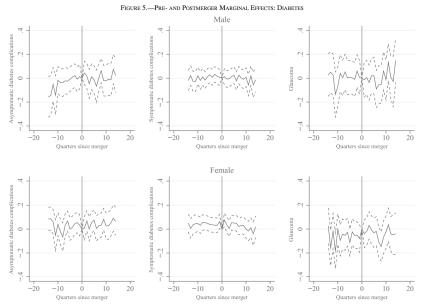



FIGURE 1.—MARGINAL EFFECT ESTIMATES SEPARATELY BY ACQUISITION: FULL MATCHING SAMPLE MORTALITY

Marginal effect estimates are reported as percentages/100. The effects are combined for the following mergers (open circle): Butler/DiCuccio; Good Samaritan/NY Institute; Texas Children's/Women's Specialists'; Christ Hospital/Hyde Park Internists; Scripps Health/Penn Elm and Theda Care/Nelson Family.

Effects by Acquisition


FIGURE 2.—MARGINAL EFFECTS SEPARATELY BY ACOUISITION: DIABETES


Koch, Wendling and Wilson (2021) The Effects of Physician and Hospital I

Time-Specific Effects - Full Sample

Marginal effect estimates are reported as percentages/100 on the y-axis.

Time-Specific Effects by Gender - Diabetes Conditions

Marginal effect estimates are reported as percentages/100 on the y-axis.

Time-Specific Effects by Gender - Hypertension Conditions

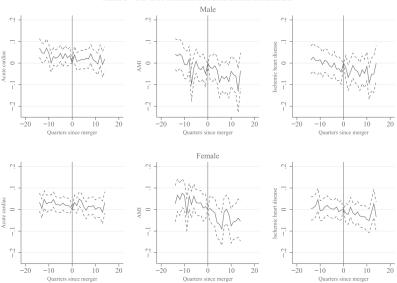


FIGURE 6.—PRE- AND POSTMERGER MARGINAL EFFECTS: HYPERTENSION

Marginal effect estimates are reported as percentages/100 on the y-axis.

Threats

- Full sample estimates might be biased given the Levin Reports likely miss some acquisitions, some physicians were unobservably acquired by hospitals during the sample period. ⇒ Matched sample estimator is driving the main conclusion.
- Vertical acquisitions may also increase physician concentration. If so, horizontal concentration may lessen competition for quality and thus offset efficiencies associated with vertical integration. *confounding horizontal effects*.

Discussion and Conclusion.

- It is possible that the transactions could lead to efficiencies for other health conditions or along other dimensions of performance (i.e., cost efficiencies) that the authors do not consider.
- There is little evidence that physician integration into hospital systems affect health outcomes (as the authors measure them).