Uncertainty and Learning in Pharmaceutical Demand

Gregory S. Crawford and Matthew Shum

Jung Jae Kim September 28, 2022

- How doctors prescribe a sequence of drugs under uncertainty?
- Uncertainty: heterogeneity in patients' illnesses and drugs' effects.
- Bayesian agents (patients and doctors) learn from prescription experience.

Research objective

• Measuring the effects of uncertainty and learning on prescription choices and treatment outcomes.

- Substantial heterogeneity in drugs' effects across patients.
- Strong evidence of learning: there are reductions in uncertainty after even a single prescription.
- This reduction leads to persistence in drug choices.
- Therefore, learning enables agents to reduce the costs of uncertainty.

- Patients' medical costs are covered by a National Health System
 → No variation in insurance status across patients
 - \rightarrow Doctros face a uniform incentive scheme.
- Anti-ulcer market is almost entirely drug-based
 → No concern about choosing expensive treatment procedures.
- Drug prices are set by the regulatory Drug Commission
 → Drugs of therapeutic equivalence are assigned the same price

TABLE I

THE ITALIAN ANTI-ULCER MARKET

Summary Statistics from the Data										
#	Molecule	Patent-Holder	In-Sample Mkt. Share ^c	Major Brands ^a in Italian Mkt.	Date of Ent r y	Avg. ^b Price				
1	Ranitidine	Glaxo	64.4	Zantac*, Ranidil	1981	\$2.90				
2	Omeprazole	Astra	11.0	Losec*, Omeprazen	1990	\$3.14				
3	Famotidine	Merck	6.8	Pepcid*, Famodil	1986	\$2.59				
4	Nizatidine	Lilly	3.2	Axid*, Zanizal	1988	\$2.74				
5	19 others	_	14.6	Various	<1981	\$1.42 ^d				

- Patient-level monthly anti-ulcer prescriptions data between January 1990 and December 1992.
- Include only patients who are first observed after June 1990 to avoid left-censoring.
- Patients receive, on average, 2.8 prescriptions for 1.2 drugs over a period of under 6 months.

- Doctor performs an initial diagnostics and selects an initial drug treatment.
- Conditional on the initial diagnosis, each doctor has uncertainty about the effectiveness of various drug alternatives.
- This uncertainty is modeled by patient-specific "match values" associated with each drug.
- "Match values" have two dimension: *symptomatic* effect and *curative* effect

Discussion: Curative effect?

Each doctor is forward-looking and selects the sequence of drugs that maximizes her patient's expected utility:

$$\max_{D = \{\{d_{jnt}\}_{n=1}^{N}\}_{t=1}^{\infty}} E_D \sum_{t=1}^{\infty} \beta^t d_{int} u_{jnt} (1 - \omega_{j,t-1})$$

- d_{jnt} : 1 if patient j takes drug n in period t
- ujnt : Single-period utility flow
- w_{it} : 1 if patent j recovers after period t
 - β : Discount factor $\in (0, 1)$

The doctor chooses the sequence D to maximizes the expected utility.

The specification for patient *j*'s single-period utility is Constant Absolute Risk Aversion function:

$$u(x_{jnt}, p_n, \epsilon_{jnt}) = -exp(-r * x_{jnt}) - \alpha * p_n + \epsilon_{jnt}$$

- x_{jnt} : Patient j's symptomatic signal from taking drug n in period t
 - p_n : Per-prescription price of drug n
- ϵ_{jnt} : Idiosyncratic error
 - r: Degree of risk aversion(> 0)

The doctor chooses the sequence D to maximizes the expected utility.

Let h_{jt} denote the probability that patent j recovers by the end of period t:

$$h_{jt}(h_{jt-1}, y_{jnt}) = rac{\left(rac{h_{jt-1}}{1-h_{jt-1}}
ight) + d_{jnt}y_{jnt}}{1 + \left(\left(rac{h_{jt-1}}{1-h_{jt-1}}
ight) + d_{jnt}y_{jnt}
ight)}$$

where y_{jnt} is the curative signal and the initial condition h_{0j} is defined

$$h_{0j} = \theta_k$$
 w.p. p_k , $k = 1, \ldots, K$

where $0 < p_i < 1$, $\sum p_i = 1$, and $0 \leq \theta_1, \ldots, \theta_K \leq 1$. h_{0i} is referred as patient j's "initial illness severity". Doctors begin treatment with prior information of two match values, μ_{jn} and ν_{jn} , the symptomatic and curative effects of the drug.

$$\left(\begin{array}{c} \mu_{jn} \\ \nu_{jn} \end{array}\right) \sim N\left(\left[\begin{array}{c} \underline{\mu}_{nk} \\ \underline{\nu}_{nk} \end{array}\right], \quad \left[\begin{array}{c} \underline{\sigma}_n^2 & \mathbf{0} \\ \mathbf{0} & \underline{\tau}_n^2 \end{array}\right]\right)$$

Patient *j* does not know μ_{jn} and ν_{jn} , but she receives signals which allow her to update.

$$\left(\begin{array}{c} x_{jnt} \\ y_{jnt} \end{array}\right) \sim N\left(\left[\begin{array}{c} \mu_{jn} \\ \nu_{jn} \end{array}\right], \quad \left[\begin{array}{c} \sigma_n^2 & 0 \\ 0 & \tau_n^2 \end{array}\right]\right)$$

Discussion: Zero correlation?

Let l_{jn}^t denote the number of times that patient j has taken drug n up to period t. Patient j's posterior beliefs regarding μ_{jn} are

$$\mu_{jn}^{t+1} = \begin{cases} \frac{\mu_{jn}^{t} + \frac{x_{jnt+1}}{\sigma_n^2}}{\frac{1}{V_{jn}^t} + \frac{1}{\sigma_n^2}} = \frac{\sigma_n^2 \mu_{jn}^t + V_{jn}^t x_{jnt+1}}{\sigma_n^2 + V_{jn}^t} \\ & \text{if drug } n \text{ taken in period } t+1, \\ \mu_{jn}^t, & \text{otherwise,} \end{cases}$$

$$V_{jn}^{t+1} = \begin{cases} \frac{1}{\frac{1}{\sigma_n^2 + \frac{j_i^{t+1}}{\sigma_n^2}}} = \frac{\sigma_n^2 \underline{\sigma}_n^2}{\sigma_n^2 + l_{jn}^{t+1} \underline{\sigma}_n^2}, \\ V_{jn}^t, \\ V_{jn}^t, \end{cases}$$

if drug n taken in period t + 1,

otherwise.

State Variables :

- (1) Patient j's posterior mean match values μ_{jn}^t and ν_{jn}^t .
- (2) Counts of the number of times that patient j has tried each drug, I_{in}^t
- (3) Recovery probability h_{jt}
- (4) Idiosyncratic errors ϵ_{jnt}

The transition rules are given in the previous slides.

Dynamic Drug Choice

Recall the maximization problem:

$$\max_{D = \{\{d_{jnt}\}_{n=1}^{N}\}_{t=1}^{\infty}} E_D \sum_{t=1}^{\infty} \beta^t d_{int} u_{jnt} (1 - \omega_{j,t-1})$$

The value function $W(S_t)$ in the infinite-horizon problem is defined via Bellman equation,

$$\begin{split} W(S_t) &= \max_n E[u(x_{jnt}, p_n, \epsilon_{jnt}) + \beta(1 - \omega_{jt})E[W(S_{t+1}|x_{jnt}, y_{jnt}, n]|S_t] \\ &= \max_n E[u(x_{jnt}, p_n, \epsilon_{jnt}) + \beta(1 - E[\omega_{jt}|y_{jnt}])E[W(S_{t+1}|x_{jnt}, y_{jnt}, n]|S_t] \\ &= \max_n E[u(x_{jnt}, p_n, \epsilon_{jnt}) + \\ &\beta(1 - h_{jt}(h_{jt-1}, y_{jnt}))E[W(S_{t+1}|x_{jnt}, y_{jnt}, n]|S_t] \\ &= \max_n E[-\exp(-r\mu_{jn}^t + \frac{1}{2}r^2(\sigma_n^2 + V_{jn}^t)) - \alpha p_n + \epsilon_{jnt} + \\ &\beta(1 - h_{jt}(h_{jt-1}, y_{jnt}))E[W(S_{t+1}|x_{jnt}, y_{jnt}, n]|S_t] \end{split}$$

Estimation Results

Darameter Eat Std. Err. Eat Std. Err. Illness heterogeneity distribution θ_{1} (Type 1) 0.433 0.003 0.533 0.006 θ_{1} (Type 2) 0.127 0.003 0.535 0.006 θ_{1} (Type 2) 0.127 0.003 0.335 0.006 θ_{1} (Type 2) 0.432 0.011 0.029 0.002 θ_{1} (Type 4) 0.432 0.012 0.029 0.002 μ_{2}^{4} 0.927 0.282 1.195 0.369 μ_{2}^{4} 0.928 0.287 0.428 0.161 μ_{2}^{4} 0.335 0.161 -0.145 0.079 μ_{3} 0.014 0.003 0.006 0.000 μ_{5}^{4} 0.013 0.084 0.000 0.002 μ_{5}^{4} 0.013 0.084 0.000 0.003 μ_{5}^{4} 0.013 0.084 0.000 0.003 Σ_{4}^{4} 0.013 0.084 0.000 0.003 Std	DYNAMIC MODEL: PARAMETER ESTIMATES								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Parameter	Est.	Std. Err.	Est.	Std. Err.				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Illness heterogeneity distribution	Recovery Probability		Type Probability					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccc} a & c & c & c & c & c & c & c & c & c &$									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	θ_4 (Type 4)	0.432	0.011	0.029	0.002				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Means, symptom match values ^b	lues ^b Type 1		Type 2					
$\begin{tabular}{ c c c c c c } \hline Type 1 & Type 2 \\ \hline Type 1 & Type 2 \\ \hline Type 2 & 0.014 & 0.003 & 0.006 & 0.0001 \\ \hline Type 1 & 0.015 & 0.005 & 0.006 & 0.0001 \\ \hline Type 1 & 0.013 & 0.030 & 0.006 & 0.0095 \\ \hline Type 1 & 0.013 & 0.034 & 0.014 & 0.0099 \\ \hline Type 1 & 0.013 & 0.034 & 0.000 & -0.038 & 0.0000 \\ \hline Std. dev., symptom match values & $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$	μ_1	0.927	0.282	1.195	0.369				
$\begin{tabular}{ c c c c c c } \hline Type 1 & Type 2 \\ \hline Type 1 & Type 2 \\ \hline Type 2 & 0.014 & 0.003 & 0.006 & 0.0001 \\ \hline Type 1 & 0.015 & 0.005 & 0.006 & 0.0001 \\ \hline Type 1 & 0.013 & 0.030 & 0.006 & 0.0095 \\ \hline Type 1 & 0.013 & 0.034 & 0.014 & 0.0099 \\ \hline Type 1 & 0.013 & 0.034 & 0.000 & -0.038 & 0.0000 \\ \hline Std. dev., symptom match values & $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$	μ ₂ ^c	0.928	0.287	0.428	0.166				
$\begin{tabular}{ c c c c c c } \hline Type 1 & Type 2 \\ \hline Type 1 & Type 2 \\ \hline Type 2 & 0.014 & 0.003 & 0.006 & 0.0001 \\ \hline Type 1 & 0.015 & 0.005 & 0.006 & 0.0001 \\ \hline Type 1 & 0.013 & 0.030 & 0.006 & 0.0095 \\ \hline Type 1 & 0.013 & 0.034 & 0.014 & 0.0099 \\ \hline Type 1 & 0.013 & 0.034 & 0.000 & -0.038 & 0.0000 \\ \hline Std. dev., symptom match values & $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$	$\overline{\mu}_3$	0.481	0.197	-0.028	0.178				
$\begin{tabular}{ c c c c c c } \hline Type 1 & Type 2 \\ \hline Type 1 & Type 2 \\ \hline Type 2 & 0.014 & 0.003 & 0.006 & 0.0001 \\ \hline Type 1 & 0.015 & 0.005 & 0.006 & 0.0001 \\ \hline Type 1 & 0.013 & 0.030 & 0.006 & 0.0095 \\ \hline Type 1 & 0.013 & 0.034 & 0.014 & 0.0099 \\ \hline Type 1 & 0.013 & 0.034 & 0.000 & -0.038 & 0.0000 \\ \hline Std. dev., symptom match values & $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$	$\overline{\mu}_4$	0.335	0.161	-0.145	0.079				
$\begin{tabular}{ c c c c c c } \hline Type 1 & Type 2 \\ \hline Type 1 & Type 2 \\ \hline Type 2 & 0.014 & 0.003 & 0.006 & 0.0001 \\ \hline Type 1 & 0.015 & 0.005 & 0.006 & 0.0001 \\ \hline Type 1 & 0.013 & 0.030 & 0.006 & 0.0095 \\ \hline Type 1 & 0.013 & 0.034 & 0.014 & 0.0099 \\ \hline Type 1 & 0.013 & 0.034 & 0.000 & -0.038 & 0.0000 \\ \hline Std. dev., symptom match values & $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$	$\overline{\mu}_5$	0.451	0.174	-0.483	0.137				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Type 1		Type 2					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<i>v</i> .	0.014	0.003	0.006	0.000				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	v_c								
μ 0.013 0.084 0.014 0.009 L_5 -0.038 0.000 -0.038 0.000 Std. devs, symptom match values - - - - - - 0.038 0.000 - 0.000 - 0.000 - 0.000 - 0.038 0.000 - 0.038 0.000 - 0.038 0.000 - 0.001 - - 0.000 - 0.001 - - 0.01 - - 0.001 - - 0.01 - - 0.01 - - 0.01 - - 0.024 - 0.01 - - - 0.026 - - 0.026 - - 0.026 - - 0.026 - - 0.026 - - 0.026 - - 0.026 - - 0.026 - - 0.027 0.021 - - 0.021 - -	Pa Pa								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
Std. dev., symptom match values									
α 1.574 0.448 Std. devs., symptom signals 0.998 0.287 σ_1 0.305 0.305 σ_2 1.135 0.305 σ_2 1.375 0.305 σ_1 0.931 0.268 Std. dev., curative match values τ 0.007 0.000 χ_2 0.007 0.000 1 χ_2 0.007 0.001 1 Price coefficient, a^a 1.080 0.091 Discount rate, r 0.990 0.274 Discount rate, β 0.950 Fixed Number of observations 34,972 1 Number of similar draws 30 1									
Sid. devs., symptom signals 0.998 0.287 σ_2 1.134 0.326 σ_1 1.375 0.395 σ_n 1.159 0.333 σ_n 0.931 0.268 Sid. dev., curative match values 0.007 0.000 Σ 0.007 0.001 Price coefficient, a^a 1.080 0.091 Risk-version parameter, r 0.990 0.274 Discount rate, β 0.595 Fixed Number of observations 34,972 Number of similar draws		1.574	0.448						
σ_1 0.998 0.287 σ_2 1.134 0.326 σ_3 1.375 0.395 σ_1 1.375 0.333 σ_5 0.931 0.268 Std. dev., curative match values $\underline{\tau}$ 0.007 0.000 Std. dev., curative signals τ 0.007 0.001 Price coefficient, a^8 1.080 0.091 Risk-aversion parameter, r 0.950 Fixed Number of observations 34,972 Fixed Number of similar draws 30									
$σ_2$ 1.134 0.326 $σ_1$ 1.375 0.395 $σ_1$ 1.159 0.333 $σ_5$ 0.931 0.268 Std. dev., curative match values 2 0.007 z 0.007 0.000 Frice coefficient, a^a 1.080 0.091 Risk-aversion parameter, r 0.990 0.274 Discount rate, $β$ 0.595 Fixed Number of observations 34,972 Number of similar draws		0.998	0.287						
m_{τ} 1.159 0.333 m_{τ} 0.931 0.268 Sid. dev., curative match values 0.007 0.000 Sid. dev., curative signals 0.007 0.001 τ 0.007 0.001 Price coefficient, a^{a} 1.080 0.091 Risk-wersion parameter, r 0.990 0.274 Discount rate, $β$ 0.950 Fixed Number of observations 34,972 Number of similar draws 30		1.134	0.326						
σ 0.931 0.268 Std. dev., curative match values $=$ \underline{x} 0.007 0.000 Std. dev., curative signals $=$ $=$ τ 0.007 0.001 Price coefficient, a^{α} 1.080 0.091 Risk-aversion parameter, r 0.990 0.274 Discount rate, $β$ 0.950 Fixed Number of observations 34,972 Number of similar draws	σ_3	1.375	0.395						
Std. dev., curative match values 0.007 0.000 Σ 0.007 0.001 τ 0.007 0.001 τ 0.008 0.091 Risk-aversion parameter, r 0.990 0.274 Discount rate, δ 0.950 Fixed Number of observations 34,972 Number of similar draws	σ_4	1.159	0.333						
$τ$ 0.007 0.000 Std. dev., curative signals Trice coefficient, a^a 1.080 0.091 Risk-aversion parameter, r 0.990 0.274 Discount rate, $β$ 0.950 Fixed Number of observations 34,972 Number of similar draws 30	<i>a</i> 5	0.931	0.268						
Std. dev., curative signals 0.007 0.001 τ 0.007 0.001 Price coefficient, a* 1.080 0.091 Risk-aversion parameter, r 0.990 0.274 Discount rate, discours 0.950 Fixed Number of observations 34,972 Number of similar draws	Std. dev., curative match values								
Std. dev., curative signals 0.007 0.001 Price coefficient, a^{a} 1.080 0.091 Risk-aversion parameter, r 0.990 0.274 Discount rate, β 0.950 Fixed Number of observations 34,972 Number of similar draws 30	<u>T</u>	0.007	0.000						
τ 0.007 0.001 Price coefficient, a^a 1.080 0.091 Risk-aversion parameter, r 0.990 0.274 Discount rate, $β$ 0.950 Fixed Number of observations 34.972 Number of similar draws 30									
Risk-aversion parameter, r 0.990 0.274 Discount rate, β 0.950 Fixed Number of observations 34,972 Number of similar draws 30		0.007	0.001						
Risk-aversion parameter, r 0.990 0.274 Discount rate, β 0.950 Fixed Number of observations 34,972 Number of similar draws 30	Price coefficient, a^a	1.080	0.091						
Discount rate, β 0.950 Fixed Number of observations 34,972 Number of similar draws 30									
Number of similar draws 30		0.950	Fixed						
Number of similar draws 30		34 972							
	Log likelihood function								

TABLE III Dynamic Model: Parameter Estimates

Importance of Uncertainty and Learning

TABLE VI						
RESULTS FROM COUNTERFACTUAL SIMULATIONS						
Baseline Specification ^a						
Avg. discounted utility	-28.7					
Avg. treatment length	4.8					
Avg. treatment cost	245					
Avg. number of different drugs	1.4					
Market shares						
Drug 1	60.4					
Drug 2	14.1					
Drug 3	3.7					
Drug 4	2.5					
Drug 5	19.3					
Herfindahl index	4,242					
Counterfactual I: Complete Information ^b						
Avg. discounted utility	-26.4					
Avg. treatment length	8.8					
Avg. treatment cost	385					
Avg. number of different drugs	1.9					
Market shares						
Drug 1	22.4					
Drug 2	12.9					
Drug 3	12.0					
Drug 4	10.9					
Drug 5	41.8					
Herfindahl index	2,676					
Counterfactual II: No Experimentation ^c						
Avg. discounted utility	-30.6					
Avg. treatment length	4.8					
Avg. treatment cost	248					

15

- Policy Implication
- Generalization